Study of Magnetic Layers in Magnetic Sensors

نویسنده

  • Lu Yuan
چکیده

Interest in highly sensitive magnetic sensors has been great due to their wide applications ranging from data storage to geomagnetic exploration. To achieve better performance, magnetic sensors are usually fabricated with micrometer-sized or sub-micrometer-sized multilayer structures. The thickness of each layer can be as thin as a few angstroms. The magnetic properties of these small and thin layers are quite different from those of the bulk. As the size of the magnetic devices shrinks and the thickness of the ferromagnetic films decreases, the chance of having defects becomes higher. Those defects may be formed during thin film deposition, annealing and the lithography process etc. To have a better understanding the origin of those nanometer sized defects is important for improving sensitivity and signal-to-noise ratio of those magnetic sensors. In this thesis, a magnetic sensitivity mapping (MSM) system is developed to locate the inhomogeneous regions in the ferromagnetic layer of magnetic sensors. An ultra-sensitive microcantilever torque magnetometer (MTM) system is developed to characterize the submicrometer-sized magnetic films and arrays. The detailed magnetic microstructures of both the free layer and the pinned layer in magnetic tunneling junctions are studied by the analysis of the temperature and voltage dependence of the tunneling magnetoresistance data. We have correlated the microstructures to the sources of magnetic noise using the developed MSM system. In this study, a scanning nanometer-sized magnetic tip was used to generate a localized magnetic field and excite the free-layer magnetic moment at the air-bearing surface (ABS). By mapping out the magnetic noise as a function of position, the inhomogeneous regions in the ferromagnetic layer of the magnetic sensors that relate to magnetic instabilities inside the recording heads are identified. We studied the voltage and temperature dependence of resistance and magnetoresistance of two types of magnetic tunneling junctions (MTJs). These two types of MTJ samples have different free layer structures but the same pinned structures and the same material for free and reference layers. The tunneling magnetoresistance ratio (TMR), defined as (R AP-R P)/R P , is 26% and 70% for type 1 and type 2, respectively. From the analysis of our results, we conclude that: (1) There are more magnetic inhomogeneous regions in the free magnetic layer of type 1 MTJ samples than in those of type 2 MTJ samples; (2) There are possible additional spin-glass-like states that occur at the interface between the magnetic layer and the insulating layer in the …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal Piezomagnetoelasticity Theory for Buckling Analysis of Piezoelectric/Magnetostrictive Nanobeams Including Surface Effects

This paper presents the surface piezomagnetoelasticity theory for size-dependent buckling analysis of an embedded piezoelectric/magnetostrictive nanobeam (PMNB). It is assumed that the subjected forces from the surrounding medium contain both normal and shear components. Therefore, the surrounded elastic foundation is modeled by Pasternak foundation. The nonlocal piezomagnetoelasticity theory i...

متن کامل

Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared...

متن کامل

Using an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor

A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage ...

متن کامل

Study of Solar Magnetic and Gravitational Energies Through the Virial Theorem

Virial theorem is important for understanding stellar structures. It produces an interesting connection between magnetic and gravitational energies. Using the general form of the virial theorem including the magnetic field (toroidal magnetic field), we may explain the solar dynamo model in relation to variations of the magnetic and gravitational energies. We emphasize the role of the gravitatio...

متن کامل

CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled t...

متن کامل

Silica -magnetic inorganic hybrid nanomaterials as versatile sensing platform

Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016